Documentation HomeProgramming ManualExamplesCustom BackendCustom DecoderCustom Decoder EngineData Source ChainingDuplex EffectEngine AdvancedEngine EffectsEngine Hello WorldEngine SdlEngine SteamaudioHilo InteropNode GraphResource ManagerResource Manager AdvancedSimple CaptureSimple DuplexSimple EnumerationSimple LoopbackSimple LoopingSimple MixingSimple PlaybackSimple Playback SineSimple Playback SineSimple SpatializationAPI Reference |
Engine SteamaudioDemonstrates integration of Steam Audio with miniaudio's engine API. In this example a HRTF effect from Steam Audio will be applied. To do this a custom node will be implemented which uses Steam Audio's IPLBinauralEffect and IPLHRTF objects. By implementing this as a node, it can be plugged into any position within the graph. The output channel count of this node is always stereo. Steam Audio requires fixed sized processing, the size of which must be specified at initialization time of the IPLBinauralEffect and IPLHRTF objects. To ensure miniaudio and Steam Audio are consistent, you must set the period size in the engine config to be consistent with the frame size you specify in your IPLAudioSettings object. If for some reason you want the period size of the engine to be different to that of your Steam Audio configuration, you'll need to implement a sort of buffering solution to your node. #include "../miniaudio.c" #include <stdint.h> /* Required for uint32_t which is used by STEAMAUDIO_VERSION, and a random use of uint8_t. If there's a Steam Audio maintainer reading this, that needs to be fixed to use IPLuint32 and IPLuint8. */ #include <phonon.h> /* Steam Audio */ #define FORMAT ma_format_f32 /* Must be floating point. */ #define CHANNELS 2 /* Must be stereo for this example. */ #define SAMPLE_RATE 48000 static ma_result ma_result_from_IPLerror(IPLerror error) { switch (error) { case IPL_STATUS_SUCCESS: return MA_SUCCESS; case IPL_STATUS_OUTOFMEMORY: return MA_OUT_OF_MEMORY; case IPL_STATUS_INITIALIZATION: case IPL_STATUS_FAILURE: default: return MA_ERROR; } } typedef struct { ma_node_config nodeConfig; ma_uint32 channelsIn; IPLAudioSettings iplAudioSettings; IPLContext iplContext; IPLHRTF iplHRTF; /* There is one HRTF object to many binaural effect objects. */ } ma_steamaudio_binaural_node_config; MA_API ma_steamaudio_binaural_node_config ma_steamaudio_binaural_node_config_init(ma_uint32 channelsIn, IPLAudioSettings iplAudioSettings, IPLContext iplContext, IPLHRTF iplHRTF); typedef struct { ma_node_base baseNode; IPLAudioSettings iplAudioSettings; IPLContext iplContext; IPLHRTF iplHRTF; IPLBinauralEffect iplEffect; ma_vec3f direction; float* ppBuffersIn[2]; /* Each buffer is an offset of _pHeap. */ float* ppBuffersOut[2]; /* Each buffer is an offset of _pHeap. */ void* _pHeap; } ma_steamaudio_binaural_node; MA_API ma_result ma_steamaudio_binaural_node_init(ma_node_graph* pNodeGraph, const ma_steamaudio_binaural_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_steamaudio_binaural_node* pBinauralNode); MA_API void ma_steamaudio_binaural_node_uninit(ma_steamaudio_binaural_node* pBinauralNode, const ma_allocation_callbacks* pAllocationCallbacks); MA_API ma_result ma_steamaudio_binaural_node_set_direction(ma_steamaudio_binaural_node* pBinauralNode, float x, float y, float z); MA_API ma_steamaudio_binaural_node_config ma_steamaudio_binaural_node_config_init(ma_uint32 channelsIn, IPLAudioSettings iplAudioSettings, IPLContext iplContext, IPLHRTF iplHRTF) { ma_steamaudio_binaural_node_config config; MA_ZERO_OBJECT(&config); config.nodeConfig = ma_node_config_init(); config.channelsIn = channelsIn; config.iplAudioSettings = iplAudioSettings; config.iplContext = iplContext; config.iplHRTF = iplHRTF; return config; } static void ma_steamaudio_binaural_node_process_pcm_frames(ma_node* pNode, const float** ppFramesIn, ma_uint32* pFrameCountIn, float** ppFramesOut, ma_uint32* pFrameCountOut) { ma_steamaudio_binaural_node* pBinauralNode = (ma_steamaudio_binaural_node*)pNode; IPLBinauralEffectParams binauralParams; IPLAudioBuffer inputBufferDesc; IPLAudioBuffer outputBufferDesc; ma_uint32 totalFramesToProcess = *pFrameCountOut; ma_uint32 totalFramesProcessed = 0; MA_ZERO_OBJECT(&binauralParams); binauralParams.direction.x = pBinauralNode->direction.x; binauralParams.direction.y = pBinauralNode->direction.y; binauralParams.direction.z = pBinauralNode->direction.z; binauralParams.interpolation = IPL_HRTFINTERPOLATION_NEAREST; binauralParams.spatialBlend = 1.0f; binauralParams.hrtf = pBinauralNode->iplHRTF; inputBufferDesc.numChannels = (IPLint32)ma_node_get_input_channels(pNode, 0); /* We'll run this in a loop just in case our deinterleaved buffers are too small. */ outputBufferDesc.numSamples = pBinauralNode->iplAudioSettings.frameSize; outputBufferDesc.numChannels = 2; outputBufferDesc.data = pBinauralNode->ppBuffersOut; while (totalFramesProcessed < totalFramesToProcess) { ma_uint32 framesToProcessThisIteration = totalFramesToProcess - totalFramesProcessed; if (framesToProcessThisIteration > (ma_uint32)pBinauralNode->iplAudioSettings.frameSize) { framesToProcessThisIteration = (ma_uint32)pBinauralNode->iplAudioSettings.frameSize; } if (inputBufferDesc.numChannels == 1) { /* Fast path. No need for deinterleaving since it's a mono stream. */ pBinauralNode->ppBuffersIn[0] = (float*)ma_offset_pcm_frames_const_ptr_f32(ppFramesIn[0], totalFramesProcessed, 1); } else { /* Slow path. Need to deinterleave the input data. */ ma_deinterleave_pcm_frames(ma_format_f32, inputBufferDesc.numChannels, framesToProcessThisIteration, ma_offset_pcm_frames_const_ptr_f32(ppFramesIn[0], totalFramesProcessed, inputBufferDesc.numChannels), (void**)&pBinauralNode->ppBuffersIn[0]); } inputBufferDesc.data = pBinauralNode->ppBuffersIn; inputBufferDesc.numSamples = (IPLint32)framesToProcessThisIteration; /* Apply the effect. */ iplBinauralEffectApply(pBinauralNode->iplEffect, &binauralParams, &inputBufferDesc, &outputBufferDesc); /* Interleave straight into the output buffer. */ ma_interleave_pcm_frames(ma_format_f32, 2, framesToProcessThisIteration, (const void**)&pBinauralNode->ppBuffersOut[0], ma_offset_pcm_frames_ptr_f32(ppFramesOut[0], totalFramesProcessed, 2)); /* Advance. */ totalFramesProcessed += framesToProcessThisIteration; } (void)pFrameCountIn; /* Unused. */ } static ma_node_vtable g_ma_steamaudio_binaural_node_vtable = { ma_steamaudio_binaural_node_process_pcm_frames, NULL, 1, /* 1 input channel. */ 1, /* 1 output channel. */ 0 }; MA_API ma_result ma_steamaudio_binaural_node_init(ma_node_graph* pNodeGraph, const ma_steamaudio_binaural_node_config* pConfig, const ma_allocation_callbacks* pAllocationCallbacks, ma_steamaudio_binaural_node* pBinauralNode) { ma_result result; ma_node_config baseConfig; ma_uint32 channelsIn; ma_uint32 channelsOut; IPLBinauralEffectSettings iplBinauralEffectSettings; size_t heapSizeInBytes; if (pBinauralNode == NULL) { return MA_INVALID_ARGS; } MA_ZERO_OBJECT(pBinauralNode); if (pConfig == NULL || pConfig->iplAudioSettings.frameSize == 0 || pConfig->iplContext == NULL || pConfig->iplHRTF == NULL) { return MA_INVALID_ARGS; } /* Steam Audio only supports mono and stereo input. */ if (pConfig->channelsIn < 1 || pConfig->channelsIn > 2) { return MA_INVALID_ARGS; } channelsIn = pConfig->channelsIn; channelsOut = 2; /* Always stereo output. */ baseConfig = ma_node_config_init(); baseConfig.vtable = &g_ma_steamaudio_binaural_node_vtable; baseConfig.pInputChannels = &channelsIn; baseConfig.pOutputChannels = &channelsOut; result = ma_node_init(pNodeGraph, &baseConfig, pAllocationCallbacks, &pBinauralNode->baseNode); if (result != MA_SUCCESS) { return result; } pBinauralNode->iplAudioSettings = pConfig->iplAudioSettings; pBinauralNode->iplContext = pConfig->iplContext; pBinauralNode->iplHRTF = pConfig->iplHRTF; MA_ZERO_OBJECT(&iplBinauralEffectSettings); iplBinauralEffectSettings.hrtf = pBinauralNode->iplHRTF; result = ma_result_from_IPLerror(iplBinauralEffectCreate(pBinauralNode->iplContext, &pBinauralNode->iplAudioSettings, &iplBinauralEffectSettings, &pBinauralNode->iplEffect)); if (result != MA_SUCCESS) { ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks); return result; } heapSizeInBytes = 0; /* Unfortunately Steam Audio uses deinterleaved buffers for everything so we'll need to use some intermediary buffers. We'll allocate one big buffer on the heap and then use offsets. We'll use the frame size from the IPLAudioSettings structure as a basis for the size of the buffer. */ heapSizeInBytes += sizeof(float) * channelsOut * pBinauralNode->iplAudioSettings.frameSize; /* Output buffer. */ heapSizeInBytes += sizeof(float) * channelsIn * pBinauralNode->iplAudioSettings.frameSize; /* Input buffer. */ pBinauralNode->_pHeap = ma_malloc(heapSizeInBytes, pAllocationCallbacks); if (pBinauralNode->_pHeap == NULL) { iplBinauralEffectRelease(&pBinauralNode->iplEffect); ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks); return MA_OUT_OF_MEMORY; } pBinauralNode->ppBuffersOut[0] = (float*)pBinauralNode->_pHeap; pBinauralNode->ppBuffersOut[1] = (float*)ma_offset_ptr(pBinauralNode->_pHeap, sizeof(float) * pBinauralNode->iplAudioSettings.frameSize); { ma_uint32 iChannelIn; for (iChannelIn = 0; iChannelIn < channelsIn; iChannelIn += 1) { pBinauralNode->ppBuffersIn[iChannelIn] = (float*)ma_offset_ptr(pBinauralNode->_pHeap, sizeof(float) * pBinauralNode->iplAudioSettings.frameSize * (channelsOut + iChannelIn)); } } return MA_SUCCESS; } MA_API void ma_steamaudio_binaural_node_uninit(ma_steamaudio_binaural_node* pBinauralNode, const ma_allocation_callbacks* pAllocationCallbacks) { if (pBinauralNode == NULL) { return; } /* The base node is always uninitialized first. */ ma_node_uninit(&pBinauralNode->baseNode, pAllocationCallbacks); /* The Steam Audio objects are deleted after the base node. This ensures the base node is removed from the graph first to ensure these objects aren't getting used by the audio thread. */ iplBinauralEffectRelease(&pBinauralNode->iplEffect); ma_free(pBinauralNode->_pHeap, pAllocationCallbacks); } MA_API ma_result ma_steamaudio_binaural_node_set_direction(ma_steamaudio_binaural_node* pBinauralNode, float x, float y, float z) { if (pBinauralNode == NULL) { return MA_INVALID_ARGS; } pBinauralNode->direction.x = x; pBinauralNode->direction.y = y; pBinauralNode->direction.z = z; return MA_SUCCESS; } static ma_engine g_engine; static ma_sound g_sound; /* This example will play only a single sound at once, so we only need one ma_sound object. */ static ma_steamaudio_binaural_node g_binauralNode; /* The echo effect is achieved using a delay node. */ int main(int argc, char** argv) { ma_result result; ma_engine_config engineConfig; IPLAudioSettings iplAudioSettings; IPLContextSettings iplContextSettings; IPLContext iplContext; IPLHRTFSettings iplHRTFSettings; IPLHRTF iplHRTF; if (argc < 2) { printf("No input file."); return -1; } /* The engine needs to be initialized first. */ engineConfig = ma_engine_config_init(); engineConfig.channels = CHANNELS; engineConfig.sampleRate = SAMPLE_RATE; /* Steam Audio requires processing in fixed sized chunks. Setting the period size in the engine config will ensure our updates happen in predicably sized chunks as required by Steam Audio. Note that the configuration of Steam Audio below (IPLAudioSettings) will use this variable to specify the update size to ensure it remains consistent. */ engineConfig.periodSizeInFrames = 256; result = ma_engine_init(&engineConfig, &g_engine); if (result != MA_SUCCESS) { printf("Failed to initialize audio engine."); return -1; } /* Now that we have the engine we can initialize the Steam Audio objects. */ MA_ZERO_OBJECT(&iplAudioSettings); iplAudioSettings.samplingRate = ma_engine_get_sample_rate(&g_engine); /* If there's any Steam Audio developers reading this, why is the frame size needed? This needs to be documented. If this is for some kind of buffer management with FFT or something, then this need not be exposed to the public API. There should be no need for the public API to require a fixed sized update. It's important that this be set to the periodSizeInFrames specified in the engine config above. This ensures updates on both the miniaudio side and the Steam Audio side are consistent. */ iplAudioSettings.frameSize = engineConfig.periodSizeInFrames; /* IPLContext */ MA_ZERO_OBJECT(&iplContextSettings); iplContextSettings.version = STEAMAUDIO_VERSION; result = ma_result_from_IPLerror(iplContextCreate(&iplContextSettings, &iplContext)); if (result != MA_SUCCESS) { ma_engine_uninit(&g_engine); return result; } /* IPLHRTF */ MA_ZERO_OBJECT(&iplHRTFSettings); iplHRTFSettings.type = IPL_HRTFTYPE_DEFAULT; iplHRTFSettings.volume = 1; result = ma_result_from_IPLerror(iplHRTFCreate(iplContext, &iplAudioSettings, &iplHRTFSettings, &iplHRTF)); if (result != MA_SUCCESS) { iplContextRelease(&iplContext); ma_engine_uninit(&g_engine); return result; } /* The binaural node will need to know the input channel count of the sound so we'll need to load the sound first. We'll initialize this such that it'll be initially detached from the graph. It will be attached to the graph after the binaural node is initialized. */ { ma_sound_config soundConfig; soundConfig = ma_sound_config_init(); soundConfig.pFilePath = argv[1]; soundConfig.flags = MA_SOUND_FLAG_NO_DEFAULT_ATTACHMENT; /* We'll attach this to the graph later. */ result = ma_sound_init_ex(&g_engine, &soundConfig, &g_sound); if (result != MA_SUCCESS) { return result; } /* We'll let the Steam Audio binaural effect do the directional attenuation for us. */ ma_sound_set_directional_attenuation_factor(&g_sound, 0); /* Loop the sound so we can get a continuous sound. */ ma_sound_set_looping(&g_sound, MA_TRUE); } /* We'll build our graph starting from the end so initialize the binaural node now. The output of this node will be connected straight to the output. You could also attach it to a sound group or any other node that accepts an input. Creating a node requires a pointer to the node graph that owns it. The engine itself is a node graph. In the code below we can get a pointer to the node graph with ma_engine_get_node_graph() or we could simple cast the engine to a ma_node_graph* like so: (ma_node_graph*)&g_engine The endpoint of the graph can be retrieved with ma_engine_get_endpoint(). */ { ma_steamaudio_binaural_node_config binauralNodeConfig; /* For this example we're just using the engine's channel count, but a more optimal solution might be to set this to mono if the source data is also mono. */ binauralNodeConfig = ma_steamaudio_binaural_node_config_init(CHANNELS, iplAudioSettings, iplContext, iplHRTF); result = ma_steamaudio_binaural_node_init(ma_engine_get_node_graph(&g_engine), &binauralNodeConfig, NULL, &g_binauralNode); if (result != MA_SUCCESS) { printf("Failed to initialize binaural node."); return -1; } /* Connect the output of the delay node to the input of the endpoint. */ ma_node_attach_output_bus(&g_binauralNode, 0, ma_engine_get_endpoint(&g_engine), 0); } /* We can now wire up the sound to the binaural node and start it. */ ma_node_attach_output_bus(&g_sound, 0, &g_binauralNode, 0); ma_sound_start(&g_sound); #if 1 { /* We'll move the sound around the listener which we'll leave at the origin. We'll then get the direction to the listener and update the binaural node appropriately. */ float stepAngle = 0.002f; float angle = 0; float distance = 2; for (;;) { double x = ma_cosd(angle) - ma_sind(angle); double y = ma_sind(angle) + ma_cosd(angle); ma_vec3f direction; ma_sound_set_position(&g_sound, (float)x * distance, 0, (float)y * distance); direction = ma_sound_get_direction_to_listener(&g_sound); /* Update the direction of the sound. */ ma_steamaudio_binaural_node_set_direction(&g_binauralNode, direction.x, direction.y, direction.z); angle += stepAngle; ma_sleep(1); } } #else printf("Press Enter to quit..."); getchar(); #endif ma_sound_uninit(&g_sound); ma_steamaudio_binaural_node_uninit(&g_binauralNode, NULL); ma_engine_uninit(&g_engine); return 0; } |
![]() |